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1 Introduction

Let us consider the constrained nonlinear programming problem (NLP)

minimize f(x)

subject to x ∈ Ω ⊂ Rn (P)

where
Ω = {x ∈ Rn | h(x) = 0, g(x) ≤ 0} (1)

is the feasible set. We assume that f : Rn → R, hi : Rn → R, i = 1, . . . ,m, gj : Rn → R,
j = 1, . . . , p are continuously differentiable functions in an open set containing Ω. For each
x ∈ Ω, A(x) = {j | gj(x) = 0} is the set of indexes of active inequality constraints.

A local minimizer of (P) is a feasible point x∗ such that f(x∗) ≤ f(x) for all feasible x closer to
x∗. Solving (P) consists in find such points, but this is not possible in practice since it involves
the evaluation of f in an uncountable set. Thus, it is suitable to deal with computationally
verifiable conditions that describe some property satisfied by every local minimizer x∗. These
are the (necessary) optimality conditions.

A good optimality condition should be easy to verify and strong as possible. In this sense,
“x∗ ∈ Rn” and “x∗ is a local minimizer” are not adequate: the first does not describe well
local minimizers, while the second is too hard to check. To obtain useful conditions, we should
consider the behavior of f and the structure of the feasible set Ω whenever possible. In this
context, a key fact is that for every local minimizer x∗ of (P), the objective function f does
not decrease locally by moving along feasible directions. This geometry can be characterized by
using the rich theory of cones.

For a general NLP with inequality and equality constraints, we consider the cone of tangent
directions of Ω at x

T (x) =

{
d ∈ Rn | ∃(xk) ⊂ Ω : xk → x, xk 6= x,

xk − x
‖xk − x‖

→ d

‖d‖

}
∪ {0}.

T (x) includes all directions for which small movements from x result in feasible points (feasible
directions). Another cone is that of descent directions, which consists of directions in which f
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decreases locally, V(x) = {d ∈ Rn | ∃ε > 0 : f(x+ td) < f(x), ∀t ∈ (0, ε]}. However, due to the
difficult in dealing with V(x), it is common to consider the restricted simple set

D(x) = {d ∈ Rn | ∇f(x)Td < 0} ⊂ V(x).

Therefore, the following necessary condition for local optimality is intuitive: if x∗ is a local
minimizer of (P) then

∇f(x∗)Td ≥ 0 for all d ∈ T (x∗), (2)

which is equivalent to D(x∗) ∩ T (x∗) = ∅. Another convenient way to write (2) is

−∇f(x∗) ∈ T ◦(x∗), (3)

where C◦ = {y ∈ Rn | yTd ≤ 0, ∀d ∈ C} is the polar of set C ⊂ Rn. See Figure 1(a).
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Figure 1: (a) d, d̄ ∈ T (x∗). The direction d is tangent, while, in addition, d̄ is feasible. We have
−∇f(x∗) ∈ T ◦(x∗), and it is not possible to decrease f along d ∈ T (x∗) maintaining feasibility;
(b) L(x∗) is the cone of directions that do not make obtuse angles with ∇g1(x∗) or ∇g2(x∗).

Condition (2) gives an authentic criterion to check if a feasible point is not a local mini-
mizer of (P), but T (x∗) is still difficult, perhaps impossible, to compute. As we have already
mentioned, we want to obtain a practical and computable condition. Taking advantage of the
algebraic description (1) of Ω, we consider the linearization of Ω at x

L(x) = {d ∈ Rn | ∇hi(x)Td = 0, i = 1, . . . ,m; ∇gj(x)Td ≤ 0, j ∈ A(x)}.

See Figure 1(b). Note that only active constraints are present, since the inactive ones do not
affect Ω locally around x. Also, note that the linearized cone L(x) is computationally tractable
since it involves only the point x and a system of linear equalities/inequalities.

It is straightforward to verify that T (x) ⊂ L(x) for all x ∈ Ω, but the contrary inclusion
may not happen (for example, if Ω = {x ∈ R | x2 = 0} then L(0) = R 6⊂ {0} = T (0)). So, we
can not change in principle T (x∗) by L(x∗) in (2) without an additional assumption, otherwise
there may exist local minimizers that do not fulfil the resulting property. Nevertheless, besides
its simplicity, L(x) gives the following useful property:
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Theorem 1. If x∗ ∈ Ω satisfies ∇f(x∗)Td ≥ 0 for all d ∈ L(x∗) then there exist scalars
λ1, . . . , λm, µ1, . . . , µp such that

∇f(x∗) +

m∑
i=1

λi∇hi(x∗) +

p∑
i=1

µi∇gi(x∗) = 0, (4a)

h(x∗) = 0, g(x∗) ≤ 0, (4b)

µi ≥ 0, µigi(x
∗) = 0, i = 1, . . . , p. (4c)

Theorem 1 can be proved by the Farkas’ lemma. In fact, it can be stated that L(x∗) is equal
to the polar of the cone generated by the gradients of active constraints [3], or equivalently, that

L◦(x∗) =

{
m∑
i=1

λi∇hi(x∗) +

p∑
i=1

µi∇gi(x∗)
∣∣∣ µi ≥ 0, µigi(x

∗) = 0, i = 1, . . . , p

}
.

Expression (4) is known as Karush-Kuhn-Tucker (KKT) conditions. The vectors λ ∈ Rm and
µ ∈ Rp

+ are called Lagrange multipliers. The origin of KKT conditions dates back to 1939 with
the unpublished master’s dissertation written by Karush. They were rediscovered in 1951 in
an independent work of Kuhn and Tucker. Curiously, Karush’s work remained forgotten for
several years. See [5]. KKT is one of the most important concepts in non-linear continuous
optimization; it also has been specialized for many particular important classes of problems,
such as multiobjective, Nash equilibrium problems and even for non-smooth optimization.

We stress that (2) or (3) may not occur at a local minimizer with L(x∗) instead of T (x∗). In
turn, conditions (4) also may not occur at local minimizers. For example, x∗ = 0 is the (unique)
minimizer of f(x) = x subject to x2 = 0, but in this case (4a) requires that 1 + 0 · λ = 0,
which is impossible. Nevertheless, Theorem 1 (i.e., KKT conditions) gives a suitable way to
decide if a point x∗ is a good candidate for local minimizer of (P). In fact, several practical
algorithms (perhaps all) for constrained optimization aim to reach points satisfying (4). So, it
is reasonable to consider hypotheses under which changing T (x∗) by L(x∗) in (2) or (3) still
provide a necessary optimality condition. Due to the nature of L(x), such assumptions act on
the constraints, and then they are called constraint qualifications (CQs). Two obvious CQs are
L(x∗) = T (x∗) and L◦(x∗) = T ◦(x∗), which are known as Abadie’s CQ and Guignard’s CQ,
respectively. In time, Guignard’s CQ is the weakest hypothesis in the sense of it ensures that x∗

fulfils (4) for all smooth functions f that has x∗ as local minimizer [4]. Many others CQs were
proposed in the literature. Among them, we highlighted the most common in classic books such
as [3, 6], the linear independence of the gradients of the active constraints (LICQ):

∇hi(x∗), i = 1, . . . ,m, ∇gj(x∗), j ∈ A(x∗) are linearly independent. (5)

It is well known that LICQ implies the uniqueness of Lagrange multipliers. Some other CQs in
the literature are: linear/affine constraints (all hi’s and gj ’s affine); Mangasarian-Fromovitz CQ
– MFCQ (the only linear combination of (5) equal to zero with nonnegative ∇gi’s coefficients is
the trivial); Quasinormality (a hypothesis associated with external penalty methods); Constant
Rank CQ – CRCQ (each subset of gradients in (5) linearly dependent at x∗ remains linearly
dependent around x∗); and Constant Positive Linear Dependence CQ – CPLD (a generalization
of CRCQ to nonnegative linear combinations). See [1, 2]. Figure 2 summarizes the mentioned
CQs. It is worth mentioning that they are not exhaustive. See [1] and references therein.

With one of these additional hypotheses, conditions (4) provided the important practical
characterization of local minimizers of (P):
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Figure 2: Some CQs and their relationship. An arrow indicates an implication.

Theorem 2. If x∗ is a local minimizer of (P) and satisfies some CQ of Figure 2, then x∗ is a
KKT point, that is, x∗ fulfils (4).

Supposing a priori the validity of some CQ, the practical implication of Theorem 2 is that if
an algorithm converges to a point x∗ for which there are vectors λ and µ satisfying (4), then x∗ is
a good candidate for local minimizer. Based on this, several methods has been proposed such as
external penalty strategies, augmented Lagrangian schemes, sequential quadratic programming
and interior point methods. See [6].

We finish with a brief comment on the recently introduced sequential optimality conditions,
which are characterizations of minimizers by means of limits of sequences. The goal of such
conditions is two-fold: on the one hand, they are satisfied by minimizers of (P) without the
necessity of any constraint qualification, such as LICQ; on the other hand, they are associated
with the sequences generated by practical algorithms. This means that the behaviour of an
algorithm can be treated regardless of the fulfilment of any CQ. Furthermore, when compared
to KKT, sequential optimality conditions provide very general CQs based on the continuity of
associated set-valued maps. See [1] and references there in.
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