
Experiments 4. Given pairs of vectors (zi, yi) ∈ Rn × {−1, 1}, i = 1, . . . ,m, let us consider the
logistic regression function with `2–regularization

f(x) =
σ

2
‖x‖22 +

m∑
i=1

log(1 + e−(x
>zi)yi), (21)

where σ ≥ 0 is a parameter. By straightforward calculations, we obtain
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where hi(x) = e−(x
>zi)yi . Immediately, f is σ–strongly convex if σ > 0. However, we also consider

in our tests the case σ = 0. Actually, note that hi(x) > 0, i = 1, . . . ,m, remain bounded when
minimizing f , and thus the Rayleigh quotients (u>∇2f(x)u)/(u>u) remains uniformly above a
positive scalar during the minimization process, at least when z forms a basis for Rn (usually,
m > n). That is, ∇2f(x) has great chances to be definite positive with an uniform constant over
the sequences generate by a method even if σ = 0.

The function (21) appears in binary classification problems. In fact, note that minimizing the
sum in (21) leads each weighted data x>zi to have the same sign as yi. In this sense, let us
consider (21) construct from the Ionosphere dataset, available from the UCI Machine Learning
Repository [18]. This dataset consists of 351 radar returns zi from the ionosphere together a
binary label yi that indicates weather or not each return is good for analysis (in our case, y = 1 for
good returns and −1 otherwise). Each entry zi encodes 34 continuous attributes, all normalized to

[−1, 1], so zi ∈ [−1, 1]34 for all i. It is worth be mentioned that we are not training a model/neural
network to predict the correct answer to an unknown data, as originally proposed [17]. In particular,
we do not divide the dataset into training and test data.


